BACKGROUND

A 750 MW gas fired combined cycle power plant in Texas wanted to test chlorine dioxide as a biocide to replace their biocide and oxidant treatment program using both bleach (sodium hypochlorite) and sodium permanganate. This power plant had been using bleach as a biocide for their raw make-up water upstream of their clarifier, again at their CWST (clarified water storage tank) and in their cooling tower. In addition to the bleach, the plant uses sodium permanganate to help oxidize and remove manganese in the clarifier during summer months when incoming manganese levels in their lake water source spiked above 0.5 ppm.

SOLUTION

When NALCO Water met with plant management to outline the capabilities of its PURATE technology to generate chlorine dioxide on-site, they quickly agreed to run a 90-day trial to quantify its benefits as both an effective biocide and oxidant. While chlorine dioxide (ClO₂) has been used for over eight decades in many industrial and drinking water applications, however, it wasn’t until the development of the unique PURATE process that ClO₂ became a viable, cost-effective biocide option in recirculating cooling towers to replace bleach or chlorine gas. The PURATE process generates chlorine dioxide gas on-site using two precursors, one of which is sulfuric acid, instead of the more commonly known three precursor technology (bleach, hydrochloric acid and sodium chlorate). Since most power plants use sulfuric acid to control pH and alkalinity in their cooling towers, this means ClO₂ can replace bleach or chlorine gas. For many industrial and drinking water applications, chlorine dioxide gas is becoming the common choice for replacing chlorine gas. This is not only due to the significant health and safety benefits of eliminating chlorine gas, but because chlorine dioxide is a very effective biocide and oxidant. It is also common for power plants to have varying degrees of success properly removing the manganese each summer and did not like having to handle the permanganate totes associated with this treatment. Microbial control in the cooling system was considered excellent while they were able to feed bleach continuously, but they struggled with the reliability and maintenance of feeding bleach to three different locations within their plant. The amount of time operators spent repairing these bleach feed systems and the permanganate feed system was considered a problem as these man-hours could be more effectively used elsewhere in the plant.

Halogen byproducts

Below are the results of the analysis of the effluent water that was treated with ClO₂ during the trial compared to bleach during the trial. Measurements of byproducts were measured after two weeks of treatment at 0.2-0.4 ppm ClO₂ residual.

SUMMARY

The PURATE – Chlorine Dioxide program met all the plant’s performance objectives, including their goal of reducing total cost of their existing biocide and oxidant treatment. The success of the trial was best summarized by the plant’s Operations Manager who said “Even if there is no cost reduction, the operational benefits are very positive for us.”

<table>
<thead>
<tr>
<th>THM</th>
<th>Measured byproduct (ppb) during Bleach Feed</th>
<th>Measured byproduct (ppb) during ClO₂ Feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromodichloromethane</td>
<td>3.2</td>
<td><0.5</td>
</tr>
<tr>
<td>Bromine</td>
<td>0.7</td>
<td><0.5</td>
</tr>
<tr>
<td>Chloroform</td>
<td>16.3</td>
<td><0.5</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>2.0</td>
<td><0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Byproduct</th>
<th>Percent reduction with ClO₂ treatment compared to bleach</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOX</td>
<td>47.4%</td>
</tr>
<tr>
<td>TOX</td>
<td>50%</td>
</tr>
</tbody>
</table>

PARABOLIC COORDINATE 100 ppm ClO₂

Figure 7 – Cooling water corrosion rates for copper and mild steel
For this trial, the plant opted to use the 78% sulfuric acid out of totes, which is the required concentration to ensure maximum ClO2 generation efficiency, instead of diluting down their existing 93% sulfuric acid used for pH control in their tower. The trial started on August 7, 2014, using an MSA-MB D5 PURATE generator, which was designed to feed chlorine dioxide to three different applications: 1) Pretreatment – upstream of the clarifier, 2) CWS (clarified water storage) tank, and 3) Cooling tower – circulating pump intake. This unit is also capable of using the 93% H2SO4 through a dilution module to create the required 78% strength for the proper reaction.

Trial Objectives
The plant and NALCO Water agreed on the following objectives for the trial to replace both bleach and sodium permanganate in the raw water pretreatment system and the cooling tower:

1. Improved microbial control in the pretreatment system (clarifier, clarified water storage tank, and filters) while maintaining microbial control in the cooling tower.
2. Better or equal manganese precipitation in the clarifier without sodium permanganate.
3. Reduced operator exposure to bleach and sodium permanganate.
4. Reduced sulfate and chloride levels in the tower through lower sulfuric acid and bleach usage, which lowers the potential for stainless steel cracking and TDS (total dissolved solids) load on ZLD (zero liquid discharge) system.
5. Improved control of biofilms and fewer deposits on heat exchange surfaces.

RESULTS
The plant agreed that the above objectives were met during the 90-day trial. There were two major benefits the plant valued the most:

1. **Increased clarifier performance**
 - Within a few days of switching from bleach and permanganate to ClO2, operators saw a noticeable improvement in effluent clarity, a removal of algae from the weirs and better sludge quality. Figure 2 shows higher “settling test” volume, which resulted in better solids capture and lower outlet turbidity during the time ClO2 was being fed.
 - Figures 3 and 4 show the effect ClO2 had on removing algae growth from the clarifier’s weirs.
 - This improvement in clarifier performance is attributed to chlorine dioxide not having the negative impact that bleach has on the functionality of the chemicals to coagulate and flocculate the solids.
 - Manganese was successfully oxidized and removed in the clarifier during the chlorine dioxide trial once the proper dosage was found (Figure 5). This demonstrated that ClO2 could replace both the bleach and sodium permanganate treatment for removing manganese in this process.

2. **Dramatic reduction in chemical usage**
 - Projected out over a year, the use of PURATE/ClO2 would reduce the total amount of chemical brought on site as follows:
 - **Current Treatment**
 - Bleach = 90,962 gal/yr
 - Permanganate ~ 7 totes/yr
 - **Treatment with PURATE/ClO2**
 - PURATE ~ 128,577 lbs = 11,279 gal ~ 3 trucks/yr
 - Permanganate = 0 totes/yr

Figure 1 - PURATE SVP Pure chlorine dioxide generator (SVP-Pure ClO2 Generator (MSA)).

Figure 2 - Clarifier settling and turbidity

Figure 3 and 4 - Clarifier weirs before and after switch to ClO2

Figure 5 - Clarifier turbidity and manganese effluent levels

Figure 6 - Cooling water sulfate and chloride levels